Excluded Computers: Marie Hicks’s Programmed Inequality

It should be no surprise, fifty to seventy years after the fact, that the introduction of electronic computers in government and industry reflected societal prejudices on women’s employment in the workforce. Books released last year about female computers at the Jet Propulsion Laboratory and NASA Langley narrated the discrimination and exclusion of those women, whose jobs reflected the messy transition from human to automated calculation in large-scale engineering (both are jointly reviewed, along with Dava Sobel’s book on an earlier generation of female computers, in the New York Review of Books here)

The number of women involved in each of these endeavors were dwarfed, though, by the female workforce of the British civil service that’s discussed in Marie Hicks’s excellent Programmed Inequality: How Britain Discarded Women Technologists and Lost Its Edge in Computing. The Civil Service was large enough to document its decisions in painstaking detail and confident enough not to mince words in its internal papers, which makes Hicks’ book a cringeworthy account of the open, blatant, self-satisfied gender discrimination that accompanied the spread of electro-mechanical and then electronic data processing in the British government.

Hicks describes how, from the late 1940s all the way to the 1970s, the civil service took a pool of machine workers that was mostly female and deliberately and repeatedly hemmed them into job categories where their wages could be kept low and their promotion opportunities (which would mean raises) constrained, at the same time as it relied on their technical skills, practical knowledge, and commitment to keep the government running. Separate pay scales for women, eliminated in 1955, were replaced by a series of “excluded grades,” including machine workers, where pay rates would be lowered to the old women’s rate rather than raised the existing men’s rate. When the growth of automated data processing made the need for more senior professional and managerial positions obvious, the service recruited men for those positions – even when it meant starting them with no computer experience – rather than take the traumatic step of letting female staff from the machine operator grades manage men and be compensated at executive-level pay scales. Perhaps unsurprisingly, the government then found it hard to retain those men, with many taking their new skills into private industry or moving back out of computing to other areas in government.

As Hicks explains it, how the the civil service managed its workforce was not only immoral and inefficient but also terrible for the long-term health of the British computer industry. While segregating away the female computing workforce kept costs low, it also hamstrung modernization. By the time the government realized its need for programmers, most of the people with those skills, being women, could not actually be classed as “programmers,” since that job was conceptualized as higher-status and therefore reserved for men. That led the government to prioritize mainframe designs that could be run with a small expert staff, since retaining skilled male programmers was hard and female machine operators with no promotion opportunities were per se unreliable. Following that decision, made by the leading purchaser of British computers, led the companies that built British computers down a blind-alley in design at just the time that microelectronics were putting more computers on more desks and sparking a revolution in the American computer industry.

The blind alley. The International Computers Limited (ICL) 2966 was one of the last mainframe series to be designed in the UK. This machine is at the National Museum of Computing in Bletchley Park, though it’s so large that only about half is on display. Photograph by Steve Parker, CC-BY-2.0, from flickr as of April 4, 2017.

 

 

Advertisements

The Last of the Computers

One of the first hires at the Jet Propulsion Laboratory (JPL) in Pasadena, before JPL became a NASA facility and even before it had the name JPL, was Barbara Canright. Canright was employed as a “computer” who would do complicated and repetitive mathematics for JPL’s engineers, as were many women who followed in her footsteps at JPL.

From the nineteenth century until the 1960s, many large-scale scientific and engineering project relied on human computers – often female university graduates without the same employment opportunities as their male counterparts – to handle the computational load. As Nathalia Holt explains in her recent book Rise of the Rocket Girls, JPL was no different. Holt’s book describes the careers of computers at JPL from the 1940s to the present: one of the last computers to be hired, Susan Finley, still works at the laboratory.

The book does an excellent job narrating the personal trials and professional triumphs of these women, including the disappearance of computing by hand. By the time JPL acquired its name in 1943, multi-purpose electronic computers were only a matter of years away. In the 1950s, JPL’s computing department acquired the first of many IBM mainframes to do calculation work. “Cora” (for Core Storage) was given a woman’s name to fit into the all-female group. Many of the women who worked with it soon branched out into programming in FORTRAN and other languages, at a time when programming had little or none of the prestige which it would later acquire. That decision helped them carve out a niche which survived when hand calculation was eliminated as a trade by the electronic computers, leading to the computer department being renamed Mission Design and the women who had worked there eventually retitled as engineers. Rise of the Rocket Girls describes their ongoing contributions to a list of JPL space probes that includes Ranger, Mariner, Viking, and Voyager.

It’s an interesting story not least because the female calculators employed at JPL were among the last in the business. Their success in transitioning into the Computer Age, reflected both in their success as individuals and in the establishment of Mission Design, was loaded with assumptions about how the aerospace industry valued various kinds of work. Though Holt doesn’t linger on them, in a lot of ways the undercurrents in Rise of the Rocket Girls reminded me of Rebecca Slayton’s Arguments that Count, which examined the relative influence of physicists and computer scientists in planning for ballistic missile defense during the same era.